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The Polarized Spectrum of Anthracene. Part 11." Weak Transitions 
and Second-order Crystal Field Perturbations. 

By D. P. CRAIG. 
[Reprint Order No. 6026.1 

Forces between molecules in aromatic crystals are small compared with 
intramolecular forces, allowing the energy levels and spectral intensities in 
crystals to be treated by perturbation methods. In intense molecular 
transitions the most important effect of a monoclinic crystal field is 
I'  Davydov " splitting of the upper state into two components giving two 
crystal absorptions, one polarized parallel and the other perpendicular to the 
b crystal axis. The Davydov splitting is proportional to the intensity and, 
in transitions of low intensity, i t  is not the only important effect, for the 
upper state of the weak transition in one molecule interacts with the upper 
states of strong transitions in neighbouring molecules to cause changes 
comparable to and perhaps exceeding it. These second-order perturbations 
alter the splitting and may upset the oriented-gas intensity ratios, especially 
if a weak and a strong band system are close together. 

If vibrational sublevels share the intensity of a system each behaves as a 
separate upper state and has distinct values of splitting and intensity ratio. 
This leads to irregularities in progression spacings which, like the other effects, 
are characteristic of the properties of the parent, isolated molecule, excited 
states and may be used to identify them. 

The theory of these effects is applied to anthracene with various 
assumptions. Values are calculated for band splittings and intensities in 
the 3800-A system. 

IN the strong anthracene absorption near 2500A (Part I, J., 1955, 539) the dominant 
effect of the crystal field is a resonance splitting of the double degeneracy due to the 
presence in the unit cell of two molecules with identical energy levels. The theory of 
this type of splitting was first studied by Davydov (Zhzcr. esksp. teor. Fiz., 1948, 18, 210); 
it is properly called a first-order crystal field perturbation because its size is approximately 
calculable by first-order perturbation theory applied to wave functions of the isolated 
molecules. The splitting is proportional to the square of the transition moment, and 
in the intense transitions commonly found in aromatic molecules (e.g., naphthalene 2200 A, 
anthracene 2500 A, tetracene 3000 dL) it may m o u n t  to some thousands of wave numbers, 
corresponding to transition moments of about 3 A .  Conditions in weak transitions are 
very different and we discuss in this Part the effect of crystal forces in the long-wave 
aromatic systems of intensity of about f = 0.1. The Davydov splitting is a few hundreds 
of wave numbers at most and may be much less ; we shall show that second-order effects 
are comparable, especially where there is a strong transition near the weak one. More- 
over, under these conditions the oriented-gas intensity ratios are seriously wrong : the 
upper states of separate free molecule transitions become mixed by crystal forces resulting 
in intensity transfers between weak transitions and stronger ones, with a superficial 
resemblance to  the well-known Herzberg-Teller intensity-stealing by vibrational perturb- 
ations. The following discussion deals with second-order crystal field perturbations with 
special reference to the 3800-A anthracene system which wil l  be analyzed and assigned in 
Part I11 (following paper) ; it falls into two parts : (i) energy changes due to interactions 
between crystal wave functions based on different molecular-state wave functions, and 
(ii) intensity transfers between perturbed molecular transitions. 

The notation used in Part I must now be adapted to describe several molecular excited 
states instead of one only. Superscripts attached to wave functions and energies as in the 
molecular wave functions $, their energies V ,  and the crystal functions Or, refer to an 
upward energy sequence of molecular excited states; subscripts are used throughout as a 
means of distinguishing different molecules. 

Part I, J. ,  1955, 639. 
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Second-order Energy Terms.-According to the analysis given in Part I each excited 
molecular state of anthracene splits into two manifolds of crystal levels all with the Same 
parity as the molecular state but transforming in other respects like different represent- 
ations of the unit cell group Ca. Table 1 of Part I (loc. cit.) gives the symmetries of the 
associated crystal and molecular states. One hds, for example, that a B h  molecular 
state has a B, crystal component (ac polarized) and an A ,  component (b  polarized). To a 
good approximation, optical transitions are allowed only to that one level of each manifold 
with zero values of the wave vectors k,, kbJ and k,  part I, Equation (14) et seq.] and in this 
case each band in the vapour spectrum splits into two spectral lines in the crystal (Part I, 
Fig. 2). These Lines record transitions from the crystal ground state to two upper states, 
described approximately as products of molecule-functions Q and cpr for the ground and r-th 
excited state. We write for the first excited state (Y = l), 

411 = 9192 . . . 911 . . . . Qn' . . . . . . . (1) 

Y1= = (1/d2)(+11 + 4 2 9  . . . . , . . 

and, by combining the product functions 4 according to representations of the unit cell 
group, 

(2) 
Y I B  = (1/d2)(+11 - 421)) 

where the subscripts number the two molecules of one unit cell. The symmetry properties 
of y depend on the symmetry of 'p and 'pl in (1) ; in the case of most interest, where is 
either of species Bz, or Ba, of Dm, yla transforms like B, of Cu and ylB like A,. 

The zero wave-vector crystal wave functions are 

where the summation is over all the unit cells with co-ordinates (p, V, a). The first-order 
splitting between @la and Q1b is, from Part I, equation (17) : 22I lm'  where 

m 

Vlm is the intermolecular potential [Part I, equation (l)] and m runs over molecules not 
translationally equivalent to 1. 

According to (2) we derive from each molecular excited state Q~ two unit cell functions 
and fB from which crystal wave functions (3) may be built. The first-order zero wave- 

vector crystal wave functions are formed by linear combination of the unperturbed 
functions (3) based on all the excited states Y of the Same parity with coefficients chosen to 
minimize the intermolecular energy. Proceeding conventionally we find that the excitation 
energy of the desired zero wave-vector crystal state is given by the lowest eigenvalue of an 
energy matrix of which the diagonal elements Hw have the form of equation (17) of Part I, 
namely, for species B,, 

c' 
m 

(4) 

in which, as usual, the subscript fi refers to molecules translationally equivalent to I ,  and m 
to the others. The non-diagonal elements Hrs are composed of integrals J and K ,  
connecting two different molecular transitions : 

'p; being the wave function for the p-th molecule in its s-th excited state. Expression (5),  
like (4), belongs to the B, matrix; the elements of the A ,  matrix are obtained by changing 
the signs of the last term in (4) and in (5). 

The integrals K vanish in the dipole approximation; however, although small, they are 
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of some interest and are discussed at the end of this section. The integrals J may be 
evaluated as described in Part I. Expanding V, and retaining only the dipole-dipole 
term, we find (cf. 1.15) 

~~p = t ( - e 2 / ~ ) l ~ r l l ~ +  cos ellr cos eplr + 2 cos ells cos epc - cos e,; cos ear 

-COS o12g  cos eP; - cos e,3s cos ep3r - cos ez; cos ep3s . . (7) 1 
where ylp is the distance between the Z-th and p-th molecules and el<, for example, is the 
angle between the transition moment for the s-th excited state of the d th  molecule and 
the line joining the centres of the Cth and P-th molecules. If the transitions to states s and 
Y have the same polarizations, the numerical factors in the integrals are the same as quoted 
in Table 3 of Part I. Table 1 summarizes all the values to the dipole-dipole approximation 
including neighbouring molecules up to 20 separation in the crystal. For I = s one has 
Jlp" = Iipr- 

TABLE 1. Intermolecular integral sums for anthracene (cm.-l A-2). 

Both transitions Both transitions Mixed polarizations 
A ,  - B,, A ,  - B,, A ,  - B,, and A ,  - B, 

CJlprJ / [ M' [ [ 1MJ [ ..................... - 990 728 292 
P 
X J h r J / [ M q M q  ..................... 06 1532 1284 
m 

If the perturbation conditions Hw - HI1 > Hrl hold we may write the excitation energy 
of the lowest excited crystal state in the second-order perturbation form : 

. . . . . .  AE = H1' + C'(H1')z/(H1l - H") (8) 
r 

The labour of diagonalizing the energy matrix rigorously is not justified unless the 
inequality above is seriously disobeyed. 

The quantities in Table 1, appropriately multiplied by the experimental transition 
moments, and taken together with the vapour excitation energies Aw allow all the quantities 
appearing on the right hand side of (8) to be calculated with the exception of the K's, which 
are small, and of the Df defined in equation (8) of Part I. It will be observed that where Df 
occurs in (4) it does so in the same way for A ,  and B, states. If therefore we disregard the 
absolute excitation energies and calculate the splittings AE(B,) - AE(&) the quantities Dr 
will cancel from the first-order terms and appear only in the denominator in the second- 
order terms, and there as differences (Dr - D) ; moreover the denominator also contains 
the difference ( A V  - A@) which will in most cases be much the larger term. This suggests 
that we might reasonably ignore differences between the D integrals and set (D - IF) = 0 
throughout; alternatively the denominators in (8) might be taken directly from the 
observed spacings in the crystal spectrum. This latter has been adopted in the calculations 
reported on p. 2307. 

Crystal Field Eflect on Iittensities.--Crystal forces mix the crystal wave functions for 
different molecular states, and the transition intensities of the molecular spectrum are 
consequently redistributed in the crystal spectrum. The extent of this redistribution 
differs in the two crystal directions and so alters the intensity ratio from the oriented-gas 
value. To calculate magnitudes we start from the wave functions corrected to the first 
order. Aside from a normalizing multiplier very near to unity, these are 

. . . .  . . . . .  Y1 = 0' + {Hl2/(Hl1 - F2) I <D2 + + {Hlf/(Hl1 - Hff))cgr + (9) 

in which the zero-order functions 0 1  etc. are all of the same crystal symmetry species. The 
transition moment per unit cell from the ground state to Y1 may be expressed in terms of 
the free molecule moments Mlr and M; for the two molecules in the unit cell, as in (10). 
The upper signs refer to  the B,, ac polarized species, and the lower to the A,, b polarized 
species. 
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The experimental intensities to be reported and discussed in Part 111 may be related to 
the oscillator strength f of the molecular transition, which may in turn be related to the 
theoretically determined transition moment : 

f = A .  AE. Q 2 ;  eQ =.&Id2 . . . . . (11) 
where A is a geometrical factor depending on the inclination of .A’ to the molecular and 
crystal axes ; AE, the transition energy, is measured in Rydbergs and Q, the dipole length, 
in atomic units. The ratio of oscillator strengths for absorption polarized along the two 
crystal axes is the polarization ratio. If the small difference in AE for the a and b crystal 
transitions is ignored the polarization ratio is given as the ratio of the calculated 
quantities (12). This may be compared with the oriented-gas value (13) from which it 
M e r s  by the presence of the first-order terms in equation (10) : 

2 
{(Mll + M21) . U/p!fI1  - M21)1} . . . . . ’ (13) 

where a is a unit vector along the a crystal axis. 
Quantitative examples of the application of formulae (10) and (12) will be given 

later. We now consider some qualitative features of the crystal-induced intensity 
transfer. The meaning of the formulie is dearer if there are just two transitions concerned, 
one weak and one strong. In the crystal each of these splits into ac and b polarized com- 
ponents which behave independently. According to (10) a fraction of the oriented-gas 
transition moment of the m(b) component of the stronger transition is compounded with the 
~ ( b )  component of the weaker. If the matrix element HIs is positive and the crystal transi- 
tion moments have the same sign the weak transition is strengthened ; under other conditions 
it may be weakened. The magnitude of the transfer is greatest when the intense system 
has a 1a.rge a@) component and H12 is large. Now H 1 2  is itself a function of the molecular 
transition moments Mf and MB ; we find that if the weak transition is very weak H12 is so 
small that transfer is negligible, on the other hand if the ‘‘ weak ” transition is in fact of 
comparable intensity with the strong the transferred transition moment is small compared 
with the transition moment already present and its effect is relatively small. In general, 
transfer should be most noticeable when the weak system is say 0-1 - 0.2 times as strong 
as the intense one, and greatest in the crystal direction in which the strong transition has 
its major component, i.e. in the ac plane for an A ,  - BaU system and along b for an 
A ,  - BzU. It follows from this last consideration that the transfer in the a and b directions 
will usually be very different, and therefore that the polarization ratio (12) will depart 
considerably from the oriented gas value. 

We must now return to a consideration of the integrals K in (5), hitherto neglected. 
Like the terms in LP these integrals vanish in the dipole approximation but their consider- 
ation cannot be avoided in the Same way, i.e. by regarding the denominator in (S), in which 
the Dr occur, as an empirical parameter. It is necessary to form an estimate of the size of 
the K integrals and then to discuss their significance. The first contribution to the integral 
Kbw in the expansion of Vlp is the interaction between the static quadrupole moment of 
one molecule in its ground state with the transition quadrupole moment of another molecule 
for transitions between its r-th and s-th states. The practical upper limit to the product of 
components of the two moments is about 1 A*, leading to interaction terms about 
times the dipole terms, or about 1/25 for the nearest neighbours which provide the only 
significant terms. One arrives in this way at an upper limit to the sum of the K integrals 
of about 1/25 times thegreatest of the Jsums in Table 1 , that is (1/25) x (728 + 1532) crn.-l , 
giving 90 cm.’l. Now it is easily verified that addition of a term of this size to Hlr in (8) 
for both A ,  and B, states makes a negligibly small Merence to the splitting so long as the 
dipole moment product exceeds 0.2, a limit which is well below the actual valu*e. This 
justifies our neglect of the K integrals in the calculations described on p. 2306 and 2307. 

Having discussed the effect of a monoclinic crystal field in a strong transition (Part I) 
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and in a transition of medium intensity we now consider briefly the case of very weak 
transitions in which, as will be seen, the K integrals are quite important. In a band 
system as weak as the benzene 2600-A or naphthalene 3200-81 systems the transition 
moment amounts to a few hundredths of an A at most, so that even if the strong perturbing 
transition has a moment of 2 or 3 A the product I-"1.1I&fCI is probably not more than 0.10. 
Evidently the second-order splitting at its greatest is less than 5 cm.-l, and the first-order 
negligible; intensity transfer will be correspondingly small. The integrals K contributing 
to Hrc are independent of the transition dipole moments, and so under these conditions 
could be comparable to the dipole-dependent integrals J. This amounts to saying that, in 
very weak systems, the intermolecular resonance effects (splitting and intensity transfer) 
die out and one is left with a feeble van der Waals type of interaction. This gives no 
splitting, since the K-dependent part of Hrc is the same for A ,  and B, states, and its effect 
on intensities is intramolecular, i .e . ,  it causes a mixing of states of the same parity in 
one molecule. Naturally the selection rule for the mixing depends on the symmetry of the 
crystal field : in the monoclinic fields of aromatic crystals each molecule is a t  a centre of 
symmetry, and only states of the same parity are mixed. If we accept the estimate of 
90 crn:l for the K integral sum and suppose the two states eligible for mixing to be lo4 cm.-l 
apart, the intensity-borrowing amounts to about the strong system's intensity, which is 
comparable to the borrowing caused by vibrational perturbations. 

Influence of Vibrational Structure.-Leaving the case in which the intensity of the 
absorption system is concentrated in one band, we must now deal with the common 
situation of a band system in which the intensity is spread over several bands to form a 
progression, or progressions, in one or more vibrations. Each of these sublevels must 
appear separately in the energy matrix formed from elements (4) and (5).  To a good 
approximation the wave functions for these molecular vibronic states may be written as 
products 9'. dc") of an electronic function and a vibrational function dn) appropriate to 
the n-th quantum state of the vibration appearing in the progression. The vibration will 
in general differ from one electronic state Y to another. For simplicity we shall examine 
the case in which only one strong progression occurs ; in the ground state all molecules will 
be supposed to be in the zeroth quantum state oqo) of the active vibration. The ground- 
state molecular wave function is now 'p . @@) and the upper states are 'pf . dn) for as many 
electronic states Y as are energetically significant. The integrals I and J are replaced by 
integrals over vibrational as well as electronic co-ordinates. These may be expressed : 

J lmV)*W = 9 ( J T ~  a ~ " J ' ~ ~ c ~ ~ C " . ' V ~ m ~  m t~,qO)? mcama(n') dr + lalq0)9 fat(n')Vl,~ ma,q0)9 mf am'(n) dr) 

The quantities 4 are the well-known Franck-Condon overlap factors. Values of (5+(n))2 can 
be found from vapour and solution absorption spectra, where they are proportional to the 
intensities of the members of the progression in the vibration Q. In real examples, at any 
rate in simpler aromatic compounds, two circumstances simplify the problem. There 
is usually only one very intense transition within easy energy reach of the weaker transition, 
and in many cases this intense system shows no well-developed progression but has its 
intensity concentrated in one rather narrow band group. It is quite realistic therefore to 
simplify the problem to that of a ground state a, a weakly excited upper state a? with 
accompanying vibrational sublevels, and an intensely excited upper state 92 without 
vibrational structure. The energy matrix for this problem is equal in order to the total 
number of vibronic levels of the two upper states. Two new types of matrix element occur. 
First, for the sublevels of one electronic level : 

HWW = Awl + D1 + (c1(n))2{z'Ilp1 + zIlml} . . . . (15) 
P m 
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and secondly, joining the two electronic levels : 

where the expressions refer to the B, components. It may happen that the quantities in 
equation (16) are small compared to the interval h v  between vibrational sublevels. It is 
then a good approximation to write for the crystal excitation energy of the n-th sublevel 
of 'pl the expression, for the B, component, 

To obtain the corresponding A ,  excitation energy it is only necessary to change the signs 
of the last terms in each of expressions (15), (16), and (17). Since both B, and A ,  energies 
depend similarly on Eqn) the splittings will be roughly proportional to the intensities along 
the progression and, because (c@))2 < 1,  they will all be smaller than in the hypothetical 
case of a system in which the same total intensity is concentrated in one band. 

To deal with changes in the polarization ratio we consider the transition moments for 
excitation to the n-th vibrational quantum level of 'pl. In the B, component 

.ka(n) = 2+{E1(n)(M11 + M21) + f4n)H12/(Hl(n)l(n) - H22)  . (MI2 + M22)} . (19) 

An analogous expression holds for A@(n) .  The polarization ratio is evidently independent 
of the Franck-Condon factors, which cancel, and it changes from member to member of 
the progression only through the slowly varying energy difference Hqn)Vn) - H22. Indeed 
if variations in this were neglected the polarization ratio would be constant along the 
progression and equal to the value for a concentrated system. In actual examples how- 
ever the variation in ratio is not negligible, but it is true that the polarization ratio is much 
less sensitive to details of the vibrational structure than is the splitting. 

Aj5j5Zicatim to Anthracene.-In this section we shall apply the theory to see how second- 
order crystal perturbations affect the spectrum of anthracene. The intense system, 
denoted on p. 2306 by 9 2 ,  is now the anthracene absorption at 2500A assigned to the 
species A ,  - Bw in Part I. 91 is the system at 3800 A (oscillator strengthf = 0.1) which 
appears in the vapour in a progression of five or more members with a spacing of 1400 cm.-l. 
Discussion of the measured crystal spectrum and comparison with theory is left to Part I11 ; 
here we are concerned only with calculating the crystal energy levels and polarization ratios 
corresponding to the weak vapour system using the theory developed earlier under each of 
the two plausible assignments for the system. The starting data include the solution 
intensity distribution along the progression, the relative values of which we equate to the 
quantities (E;Vn))2 as follows : n = 0 : 0.324, It = 1 : 0.316, n = 2 : 0.218, n = 3 : 0493, 
PZ = 4 : 0.050. The interaction integrals are otherwise determined by the values in 
Table 1 and by the transition moments lWl = 0.61 A and IWl = 2.3 A found in the 
solution spectrum. 

For Table 2 and Fig. 1 it is assumed that the 3800 A system has the same polarization 
as the intense system, i e . ,  belongs to the species A ,  - B3,. Table 3 and Fig. 2 assume, 
contrariwise, that the polarization is A,  - B2u. In order that the individual terms of the 
energy may be compared the Tables show separately the splitting calculated with and 
without the last term of equation (18), which measures the second-order effect of 'p2 on ql. 

TABLE 2.  Assumption : Weak system assigned A,  - Bw. 
First-order B, component A ,  component Splitting 

n splitting (cm.-l) by (18) (cm.-l) by (18) (cm.-1) by (18) (cm: 
0 300 + 71 
1 364 +hv + 142 
2 281 +2hv +127 + ~ A v  - 98 225 
3 121 +3hv + 55 +3hv - 44 99 
4 50 + U v  + 10 +4hv - 29 39 

- 146 217 
+hV- 140 282 

Concentrated system 1133 +444 - 422 866 
Omitting throughout the constant Awl + D*. 

Polarization 

2.3 : 1 
1.9: 1 
1.5: 1 
1.1 : 1 
0-7 : 1 
2-3 : 1 

-1) ratio u / b  
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TABLE 3. Assumption : Weak system assigned A ,  - B2%. 

First-order B, component * A, component * Splitting Polarization 
n splitting (cm.-l) by (18) (cm.-l) by (18) cm.-l) by (18) (cm.-l) ratio a / b  
0 28 -180 -209 29 1 : 3-0 

1 : 2-8 I 22 +hv - 165 + h ~  - 196 31 
1 : 2-6 2 I 3  +2hv - 112 + 2 h ~  - 137 25 

3 3 +3hv - 50 + 3 h ~  - 64 14 1 : 2.4 

Concentrated system 71 -476 -589 133 1 : 3.0 
4 3 +4hv - 29 +4hv - 42 13 1 : 2-0 

* Omitting throughout the constant Awl + D'. 

Without this term the splitting is comparable to the Davydov splitting of a concentrated 
system, with the exception of additional interaction terms in our case between different 
vibronic (electronic x vibrational) levels of the same electronic state. 

FIG. 1. A --€I*. 
I 
I 
I 
I 
I 
I 

b 
-4 

3 - 
FIG. 2. A, - Bg,. 

Crystal sfiectra of a transition with the intensity and vibrational structure of the anthracene 3800 A system, 
assumed to bekmg to fhe long axis-polarized species A, - B,, (Fig. 1) or the short-axis polarized species 
A, - Bhr (Fig. 2). 

Dotted lines : oriented gas model. Faint full lines : weak-coupling model with first-order energy 
corrections only. Full lines : weak-coupling model including intensity transfers and second-order 
energy corrections. The vertical lines are proportional to  intensities with the a component above 
and the b below the horizontal line. The horizontal axis is 
marked in thousands of wave numbers. The neglected integrals D would if included, displace the 
crystal spectra bodily to  lower frequencies. 

The vertical scale is doubled in Fig. 2. 

The progression intervals in vapour and solution are constant except for a very slow 
change due to  anharmonicity which is in any case negligible in the first few members. 
Crystal forces distort the intervals enough to be detectable experimentally, and do so to  
different degrees in the two assumed polarizations. The calculated splittings are equally 
characteristic, as also are the striking changes in polarization ratio; the values in the 
Tables should be compared with oriented-gas values of 16 : 1 and 1 : 7-8, respectively. 
These three quantities, the resonance splittings, the progression intervals, and the polariz- 
ation ratios, are the essentially crystalline spectral properties, and they should enable 
the assignment of molecular transitions in anthracene and in other cases of favourable 
crystal structure. 
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